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Abstract. This paper considers the one-parameter lattice models of classical statistical 
mechanics from a simple algebraic viewpoint. The way in which the limiting locus of 
partition function zeros emerges through a sequence of semi-infinite ( m  x CC) lattice sections 
is considered. Convergence to the limiting locus C,  is obtained through two sequences 
of algebraic curves. For all arbitrarily large but finite m the partition function per site is 
a branch of an algebraic function -1, defined by an irreducible polynomial and possesses 
only a finite number of algebraic singular points. In the limit of m + 3c' infinitely many 
branch points accumulate on Cx.; an algebraic basis to the universality hypothesis is 
presented in terms of the accumulation of branch points at the critical point. It is argued 
that for many two-dimensional lattice models the critical exponents a and v will be of the 
form a = 2/s  and v = ( s  - 1 ) / S .  where s is an integer 3 3 ,  

1. Introduction 

A strong connection between the theory of algebraic functions and the mathematical 
construction of the critical behavioiir which is exhibited by the lattice mciiels of 
classical statistical mechanics in the thermodynamic limit has recently been suggested 
by the present author (Wood 1985). The purpose ofthe present paper and its companicn 
paper (Wood er a1 1987, hereafter referred to as 1 1 )  is to explore this connection in 
detail. The present paper sets out the mathematical basis in the most general form 
which appears to be possible and as such addresses the set of all one-parameter lattice 
models. The general theory which is outlined here is illustrated in detail i r i  I1 for a 
large number of the well known models of statistical mechanics. 

2. The transfer matrix and irreducible polynomials 

With respect to chosen boundary conditions, any classical lattice model with finite 
range interactions and discrete site variables can be defined by its transfer mztrix. The 
boundary conditions are important in the present development t o  the extent of exploit- 
ing symmetry, and for this cyclic boundary conditions which permit mai.;imal exploita- 
tion are assumed. By T,, we denote a transfer matrix of finite dimerisiorl 11. T,, is 
established on a subgraph G of the lattice and with cyclic boundary conditions G is 
itself cyclically connected in d - 1 dimensions. The lattice is generated by a one- 
dimensional translation of G in discrete steps. If G, and G2 represent G translated 
through one such step the transfer matrix elements are defined by 

T ~ ~ ( a : ~ ) = e x p - [ ~ u ( ( ~ ) + ~ u ( p ) + w ( a ,  p ) ]  (1) 
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and are indexed by a and p which are the discrete configurations of the classical site 
variables in GI and G2, respectively. In ( l ) ,  U(.) is that part of the reduced lattice 
Hamiltonian which is dependent solely upon a, and w(a, p )  is that part of the reduced 
Hamiltonian dependent solely and simultaneously upon a and p. 

The discrete configurations in G define a basis dl , d2, . . . , dn with respect to which 
Tfl is defined. Thus for the scalar q-state Potts model R = qm,  where the number of 
sites in G is m and d I ,  #J,, . . . , dn are simply the q colourings of the subgraph G. 
Let m continue to denote the number of sites in G; the partition function of the m x n 
finite lattice is given by 

where the variable z is any variable in terms of which the transfer matrix can be 
expressed and  A,(z), i = 1,. . . , R, are the eigenvalues of T,, and hence roots of the 
characteristic equation 

(3)  A ~ ' + + ~ ( Z ) A ' " - ' +  ( L , ( z ) A ~ - ~ + .  . . + ( L ~ ( z )  = o  
where + k ( z )  are all rational functions of z. Equation (3) identifies all of the eigenvalues 
A i ( z )  as algebraic functions. An algebraic function y ( z )  is a function of z which 
satisfies a polynomial equation 

P ( y ,  z ) = ~ o ( z ) y " + ~ , ( z ) y " - l + .  * . + # I n ( z ) = O  (4) 

where the functions (bk are analytic functions of z. Everywhere in the complex plane 
of z, y takes n determinations y ,  , y, ,  . . . , y ,  which are the function elements or branches 
of the general analytic and multi-valued function y ( z ) .  For y ( z )  in (4) to be one such 
algebraic function it is necessary that the polynomial equation (4) be irreducible, where 
P ( y ,  z )  does not factorise into two or more factors P l ( y ,  z ) P 2 ( y ,  z ) ,  where PI and Pz 
are polynomials in the same class as P(y ,  z ) .  The eigenvalues of (3) belong to a specific 
class of algebraic functions, namely the class of functions for which & in (4) are 
themselves all polynomials; this form can be developed for all transfer matrices by 
factorising out the largest inverse power of z from the matrix. 

The eigenvalues of T l , ( z )  are never the branches of a single algebraic function 
since (3)  is always reducible. This reducibility is a feature of all lattice models, the 
group of lattice rotations which map G into itself ensures that (3) is never irreducible, 
and it is always possible to block diagonalise the transfer matrix under a unitary 
transformation U which is itself independent of z, thus 

where Tk are matrices whose elements are polynomials in z. If a unitary transformation 
U can be found such that (5) constitutes a full factorisation of (3)  into irreducible 
factors then a single algebraic function A k ( Z )  can be assigned to each block, the 
branches of which are the eigenvalues of T k .  A thorough description of this construction 
has been given by Ree and  Chestnut (1966) and  Runnels and  Combs (1966) for 
two-dimensional hard core lattice-gas models; this construction generalises to any 
model in any dimension. In general this particular unitary transformation alone is 
unlikely to factorise (3) irreducibly for finite m because for most models the group of 
lattice rotations is simply a subgroup of a larger group under which the Hamiltonian 
is invariant. Consider, for example, any two-dimensional q-state Potts model; the 



Algebraic construction of partition function zeros 3473 

Hamiltonian is invariant to the group of m lattice rotations but also to the group of 
q colour rotations represented by the cyclic groups C, and C,, respectively. An 
ordering of the basis set 4 , ,  42, . . . , &, is achieved by grouping subsets into equivalence 
classes which map into themselves under the chosen group. The group which minimises 
the number of equivalence classes will determine a transformation U which achieves 
a maximal factorisation of (3). 

With m = 2 in the q-state Potts model and the chosen group being C2 the number 
of equivalence classes is i q ( q  + l ) ,  whereas under the group C, the number of 
equivalence classes is simply 2 and the transfer matrix takes the form 

where A ,  , and Azr are both cyclic matrices of dimension q and q(  q - l ) ,  respectively. 
The dimension of the largest block ( T ~  say) in (5) is 2; for the triangular lattice this 
matrix is 

( 7 )  

yielding a quadratic factor of the original characteristic equation (3) which was 
originally of degree q2 in A. Similarly for the simple quadratic lattice h , ( z )  is the 
two-valued algebraic function defined by the polynomial equation 

3 z2(z4+ q - 1) z (q  - l ) ( Z ' +  z +  q - 2 )  
qzz+ 2(q - 2)z + ( 4  - 2)' [ z(  z3 + z + q - 2 )  T I ( Z )  = 

.A: - [z4+ qz2+2(q  -2121- q2  -3q +3IA1, +z2(z  - 1),(z + q - 1)* = 0 (8) 
which is irreducible. The remaining factors of the characteristic equation of (6) are 
simply linear factors and hence the remaining Ak are polynomials. 

Finally we give an example in terms of the triplet Ising model on the triangular 
lattice (Baxter 1982). This model has the lattice Hamiltonian 

H = - K C U,U,U~ ( u , = * l , i = l , 2  , . . . ,  N )  
A 

( 9 )  

where the three spin interactions are over all the elementary triangles of the lattice. 
Consider the case of a 3 x n lattice ( m  = 3) under the group C3 of lattice rotations. 
The four equivalence classes are 

{ ( + + + ) I  I ( - + + ) ,  ( + - + I ,  ( + + - ) I  
{ (  - - +), ( - + -), (+  - - ) I  { ( - - - ) I  

(10) 

and U = 1 0  C 3 0  C 3 0  1, where the largest matrix T~ is four dimensional. The group 
of lattice rotations is however not the only operation under which the transfer matrix 
elements are invariant. If we label the three site variables in GI and G, by t ,  , t 2 ,  t3 
and U , ,  u2, u3 we observe that T(a, P )  is invariant to the operation t , ,  t 2 ,  t3+ - t , ,  
- t2 ,  r 3  and simultaneously g,, u2, u3+ (T,, -U, ,  -u3; the basis can be regrouped into 
two sets 

{( - - -1, ( -  + +), (+ - + I ,  (+ + -11 
{(+ + +), ( -  + -1, (+ - - 1, (-- - + ) I  (11) 

and T is factorised revealing that the previous quartic obtained from the largest block 
using (10) is reducible and (3) factorises to the form 

[ A 3 +  ( 2 ~ - ~  sinh 4K)3][A3 - (22, sinh 4K)3][AZ - 2A (3 cosh 2 K  +cosh 6 K )  

+ 6 ( ~ 0 s h  8K - l ) ]  ( z  = eK 1. (12) 
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Some interesting examples of the block diagonalisation ( 5 )  for the vertex model form 
of the q-state Potts model have recently been given by Martin (1986) (see 11, 9 3). 

For most lattice model problems in statistical mechanics the transfer matrix is a 
strictly positive matrix for z > 0, where T ( a ,  p )  > 0, z > 0 with the exception of hard 
core type models but in such cases there exists an integer k for which T h ( z )  is a 
positive matrix. Hence for such lattice models the theorem of Perron and Frobenius 
applies to Tn(z) on the positive real axis, namely that the eigenvalue of maximum 
modulus is positive and simple for all z>O. This eigenvalue belongs to one of the 
irreducible factors of (3); we will denote the algebraic function to which this eigenvalue 
belongs as A, (z)  and the block which defines A, as T , ( z ) .  The elements of ~ ~ ( 2 )  can 
always be expressed as polynomials in z (if the factorisation of Tn has been performed) 
with positive coefficients, and so clearly the Perron and Frobenius theorem applies to 
T , ( z )  aione. In fact T ~ ( z )  is the only matrix in the set T~ which is positive for z > O .  
This alone suffices to identify T , ( z )  as the matrix which generates the algebraic function 
A,(z)  which determines the maximum eigenvalue AT(z), z > 0, where 

lim ( 1 / n ) l n Z m n = I n A ~ ( z ) .  (13) 
n+cc 

We can summarise our results as follows. 
(i) The characteristic equation of Tn(z) for all model problems defined upon a 

lattice factorises into irreducible polynomials. 
(ii) The eigenvalue A: for z > 0 is at all times a branch of one such polynomial 

factor, A,(z), and remains distinct from all the other branches of A ,  for z > 0. 
(i i i)  For the most part the factorisation of (3) into irreducible factors can be 

accomplished by a single unitary transformation ( 5 ) ,  defined by the largest combined 
group of operations in both lattice space and spin space under which the lattice 
Hamiltonian remains invariant. 

(iv) The eigenvectors of Tn(z) which belong to the branches of A, (z)  all transform 
identically into themselves under the group which defines U. 

3. Branch points, connection curves and more branch points 

In 0 4 we discuss the manner in which the algebraic construction of the limiting locus 
of partition function zeros proceeds in the limit of m + W. In this a spectacular geometry 
of algebraic curves emerges. The stochastic build-up of a Julia set for hierarchical 
models (Derrida et a1 1983) is replaced by an intricate system of smooth algebraic 
curves which converge onto the limiting locus. The construction of this locus involves 
an interplay between the limiting locus of the m x 00 system itself and the locus of 
zeros generated by the block T , ( z )  in ( 5 )  considered as though it were a partition 
function in its own right. The former is pathological in the limit of m + CC and the 
latter is smooth and well defined; both converge to the locus of partition function 
zeros in the thermodynamic limit of m, n += cc. All of these algebraic curves are generated 
by the polynomial resolvent introduced by Wood (1985) which defines a cut in the z 
plane where the eigenvalues of Tn are everywhere distinct in modulus in the cut plane. 
Of particular importance are the cuts generated by the single block T ~ ( z )  in which the 
algebraic singular points (branch points) of A,  are linked by a network of algebraic 
curves exhibiting a rich geometrical structure. Although the theory of algebraic func- 
tions is a highly developed area (Fuchs and Shabat 1961, Goursat 1916, Appell and 
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Goursat 1929, Ahlfors 1953) the author has found little in the mathematical literature 
relating to these geometrical features. In this section we discuss these novel aspects 
with reference to algebraic functions in general before considering the algebraic 
functions generated by the transfer matrices of statistical mechanics. 

We consider an algebraic function A with n branches A I ,  A 2 ,  . . . , A, defined by the 
irreducible polynomial equation 

where I#+(.%) are polynomials in z. Since qho = 1, A has a finite number of algebraic 
singular points (branch points) including the circle at infinity, and no poles at finite 
values of IzI; it is regular everywhere in the z plane apart from these points. The 
branch points are arbitrary in number. Since 4 k (  z )  are polynomials the branch points 
are easy to locate formally; they are the roots of a polynomial (the discriminant) 

where A ( z )  is the resolvent between the two polynomials 

and 

F(A,  Z ) = A " + ~ ~ ( Z ) A " - ' + ~ ~ ( Z ) A " - ~ + .  . . + & ( z ) = O  (14) 

A ( z ) = O  

F(A)  = O  (15) 

aF(A)/aA = 0. (16) 
The degree of A ( z )  depends upon the polynomials 4k.Z); when the coefficients of 
& ( Z )  are all real then the branch points of A occur in complex conjugate pairs. Well 
known forms for A ( z )  are the determinantal forms of Sylvester and Bezout (Turnbull 
1952, Littlewood 1958). 

Let z i ,  i = 1,2 , .  . . , be the branch points of A, and consider the set L of points in 
the z plane where any pair A i  and Aj  of the n branches are equal in modulus. Thus 
on L 

= A. J ei+ (17) 
for some i and J ;  clearly zi belong to L. 'The set L is in fact traced out by smooth 
algebraic curves which are themselves branches of an algebraic function 2. We shall 
refer to these curves as connection curves, since they define a set of connections 
between the branch points zi. The connection curves are defined formally in terms of 
the resolvent between the two polynomials 

In determinantal form this is specifically given by the polynomial equation (Littlewood 
1958) 

F ( A )  = 0 F ( h A ) = O  ( P I  = 1). (18) 

4 2  4, 
41 42 4 n  

I 
and defines the branches z , ( h ) ,  z 2 ( h ) ,  . . . , z,( h )  of an algebraic function Z defined by 
the expansion of the determinant yielding 

h" h " - ' 4 ,  h"-'& . . .  I$,, 

(1 - h ) " [ 4 , ( h ) Z S  + c#Jl(h)zs-'+. . .+ 4,(h)] = (1 - h ) " R ( z ,  h )  = 0 (20) 
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where 4 , ( h )  are polynomials in h. Strictly we should first assure ourselves that (20) 
is itself irreducible before we can define a single algebraic function 2. At h = 1 (20) 
is an identity since the two polynomials in (18) are identical and the roots of R(z,  1 )  
determine the branch points of A. 

Consider the polynomial equation 

R(h,  z )R(h*z )  = o  (21) 
invariant under the transformation h + h-’. The real coefficients in (21) are mapped 
out in terms of the variable 

w = cos f#l = t (  h + h - l )  (22) 

and we need consider only the domain 0 6  4 G T. As 4 increases from 0 to 7~ the 
branches zk(f#l) trace out complex conjugate curves which emerge from the branch 
points Zk(1) and are completed at 4 = 7. With the circle at infinity included as a 
possible branch point the curves traced out by z k ( 4 )  define a set of connections on 
the branch points zk( l ) ,  which is the set L and which we now refer to as connection 

The branches A ,  are the function elements of A, which has a finite number of 
algebraic singular points. Without any restrictions imposed on a path from A to B we 
can always find one path where the branch A,(z), say, at A arrives at B with any one 
of the values of the n - 1 other branches. Single valuedness in the branches A,(z) 
themselves can always be achieved in the cut plane. The set of connection curves L 
above is such a construction where at all points in the z plane cut by the connection 
curves the roots of (14) are distinct in modulus. Not surprisingly the geometry of the 
connection curves L is extremely intricate and highly structured. In relation to the 
algebraic functions generated by the transfer matrices of statistical mechanics the z 
plane cut by the connection curves is important to us since it reveals paths in the plane 
where the branch of T,(z),  which is maximum in modulus, remains maximum in 
modulus along all points in the path. 

We now recall the analytic development of the branches A,(z) about an algebraic 
singular point zk( l ) .  At a branch point z k ( l )  a number of the roots A,  are equal. 
Consider the multiplicity of these roots to be mk at zk ( l ) .  As is well known (Fuchs 
and Shabat 1961) the mk roots group themselves into a cycle structure p1 , p z ,  . . . , where 

mk = p 1 + p * + .  . . (23) 

curves. 

and p1 of the mk branches which become equal at zk( 1) permute into each other on a 
path in the z plane which encircles Zk(1) and does not enclose another singular point. 
Similarly, p 2  other function elements from amongst the same m, branches permute 
into each other, and so on. In such a grouping of branches the roots which permute 
into each other are said to belong to a cycle and pt is the cycle number of this group. 
The branches of the same cyclic system with cycle number p ,  say, at a branch point 
zk ( l )  can be represented by a unique analytic development about the branch point 
(here assumed to be an algebraic zero), in the form 

(24) A ,  = A , ( z k ( l ) ) + z  a , ~ ~ ’ ~  i = 1,2,  . . . , p 

where E * ’ ~  takes all of its p determinations, a, are constants and E = ( z - z k ( l ) ) .  
We now consider what can be said about the geometry of the connection curves 

L. Firstly, there are two cases to be identified in relation to the nature of connection 
curves in the neighbourhood of a branch point w - 1. 
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( a )  The number of branch points s = the degree of R(z,  w )  as a polynomial in z. 
(b)  The number of branch points s <the degree of R(z, w ) .  
In case ( a )  one connection curve emerges from each branch point. In case (b )  the 

discriminant R(z, 1 )  has itself multiple roots and some of the branch points of A 
correspond to non-analytic points of the branches zk( w ) ,  and so w = 1 is also a branch 
point of 2 in (20). Clearly at those branch points more than a single curve emerges. 
Suppose p is a cycle number of this branch point. Applying (24) to the branches of 
(20) we have 

zJ(w)=zJ(l)+a,E"PW,+ * . .  j = 1,2 ,  . . . , p (25) 

where E = 1 - w 3 0 and w, are the p roots of unity. Equation (25) describes the nature 
of the connection curves in the neighbourhood of this type of branch point z k (  l ) ,  since 
E 2 0, p curves emerge from zk( 1 )  asymptotically along curves which subtend angles 
of 2 r / p  with each other. 

The other branch points of 2 in the domain of Ihl= 1 also play an important role 
in the way in which the connection curves connect the branch points zk of A. These 
points are intersection points of the connection curves as they are traced out under 
increasing 4, corresponding to values of $J or w where the resolvent R(z, w )  has itself 
multiple roots. The multiple roots of R(z, w) in the domain Ihl= 1 are the intersection 
points of L. If w, (f 1) is a branch point of 2 and p is a cycle number associated 
with this branch point, then in the neighbourhood of w,p branches of 2 have the form 

ZJ ( w ) = z,( w,) + a, E '%IJ + , . , (26) 

where E = w, - w and is real. For p = 2 a pair of connection curves cross orthogonally 
and z,(w,) is in general the meeting point of 2p curves asymptotically subtending 
angles of r / p  with each other. All aspects of the above geometry appear in the 
applications to statistical mechanics included in 11, but it will be helpful here to include 
a few illustrations based upon simple polynomials of the type (14), and indeed the 
simplest of examples unfolds a striking geometry. 

Consider a two-valued function An defined by 

j = 1 , 2 ,  . . . , p 

A', -2A" + Z "  = 0. (27) 

This has two branches 

A I , "  = 1 + (1 - z")'" A > , "  = 1 - ( 1  - z")"' 

where the positive and negative signs originate in the two determinations of (1 - z " ) " ' .  
For any quadratic equation 

A'+ b A + c = O  (29) 

b2( 1 + t 2 )  = 4c  

the connection curves are traced out by the solutions to the equation 

( t  = tan 4 / 2 )  (30) 
which is the form taken by the resolvent R(z, w )  using (21). The branch points of A,, 
in (27) are the n roots of unity wj and hence the connection curves are 

(31) 
namely the spokes shown in figure l ( a )  which connect each branch point to the circle 
at infinity. Here we have a case where in the limit of n + CO the branch points become 

z i (4)=(1+r2)""wj  j = 1 , 2 ,  . . . , n 
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( a )  ( b )  

Figure 1. ( a )  The connection curves of (27), ( 6 )  the connection curves of (32). 

dense on the unit circle with a uniform distribution, and also in this limit the connection 
curves become dense in IzI> 1 .  Redefining A, to be the roots of 

A', - 2 z " A , +  1 = O  ( 3 2 )  

zZn ( 1  + t 2 )  = 1 ( 3 3 )  

produces branch points at the 2n roots of unity and the resolvent equation now becomes 

which itself has a branch point in the limit of t + CO where z = 0 is a root of multiplicity 
2n. The connection curves are shown in figure l (b ) .  They are the spokes now interior 
to the unit circle and z = O  is a meeting point of these curves which constitute n 
straight-line segments connecting the points *uj, j = 1 , 2 , .  . . , 2 n .  

Examples of the above type can be designed without recourse to a polynomial 
equation. If an analytic function A ( z )  has only n distinct values for each z, and if it 
has in the whole plane (including the point at CO) only algebraic singular points, then 
the n determinations of A are the roots of a polynomial of degree n in A whose 
coefficients are rational functions of z. Consider the algebraic function A,,,, at particular 
values of m and n given by 

A,,,, = (1 + z)" f ( 1  - z " ) " ~  n odd (34) 

where we have maintained the branch points of A,,, as the n roots of unity but have 
simultaneously created algebraic singularities in the branches zi(  t )  of the resolvent 
equation (of degree 2 m  ( 2 m  > n )  or n ( 2 m  < n ) )  

( z "  - 1 )  = (1 + Z)2mt2 ( 3 5 )  

U 2 m - n ( l - u n ) = ( l + U ) ~ ~ f 2  2 m > n  ( 3 6 )  
showing that at 4 = 0 (the origin of the connection curves, and a branch point of A,,,) 
the point at infinity is a root of multiplicity 2 m - n .  Thus 2 m - n  connection curves 
emerge from the circle at 00, and do so in the asymptotic directions equal to those 
defined by the 2 m  - n roots of unity. Similarly, transforming ( 3 5 )  under t + 1 /  t yields 
the fact that z = -1 is a root of the resolvent of multiplicity 2m, and hence z = - 1  is 
a meeting point of all the connection curves which leave a branch point. When 2 m  > n 
there is also a root of the resolvent of multiplicity 2 on the real axis somewhere between 
1 and 4. It remains to discover the geometry of these connections. Consider the cases 

( t  =tan 4 / 2 )  

at real values of t. Transforming ( 3 5 )  under z = l / u  yields 
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n = 3, m = 1 , 2 , 4 .  . . . With m = 1 there is no branch point at infinity and z = -1 is the 
meeting of connection curves emanating from the two complex roots of unity-the 
situation is shown schematically in figure 2(a).  For m > 1 the cycle number of the 
branches z,( t )  at z = -1  is 2m. Here a ,  = 0 and a2 # 0 whence the branches z, in the 
neighbourhood of z = - 1  are of the form 

z,=-1+a2&l”w;+ . . .  j = l , 2 , . .  . , 2 m ,  & > 0 .  (37) 
Thus, with m = 2, the branches follow the curves shown in figure 2( b ) .  For m = 4, the 
curves intersect orthogonally as shown in figure 2( c). 

The above analysis of the resolvent (20) gives some classification of the geometry 
of the connection curves but it does not indicate which of the branch points of the 
function A(z)  in (14) become connected. A feature of the polynomial generated in 
the characteristic equation of the block T , ( z )  in (4) is that AT has no algebraic singular 
points at CD (see 9 4). The most common feature of the connection curves in this case 
is that they appear to constitute a set of connections between pairs of branch points. 
The question arises as to what can be said about such pairs which are connected. 

Consider a point on a connection curve traced out by a branch z,( w )  of the resolvent. 
At such a point there exists at least two branches A,  and A, which are equal in modulus. 
It follows that A,  and A, can be written in the form 

A ,  = uy A, = uy* (38) 

A’+ b u n +  u2c  (39) 

y 2 +  by+  c = 0 (40) 

with roots y ,  and y2 which are complex conjugate pairs when z , ( w )  is a point on a 
connection curve. Now w(=cos 4 )  is a parametrisation of this connection curve and 
everywhere on it away from a branch point (40) takes the form 

where /uI = 1 ;  thus A ,  and A, are roots of a quadratic factor of the form 

and there exists therefore a real quadratic factor 

y 2 +  b ( w ) y +  c( w )  = 0 (41 1 
where the real coefficients are smoothly varying functions of w. The roots of (41) yield 
the two branches in (38) and at the point w = 1 where y ,  and y ,  are both equal and 
real we move into a branch point of A,  and Al. We see that the branch points of (41) 
are linked by the smooth connection curve z , ( w ) ,  and so if two branch points of A(z)  

( a )  ( b )  ( C )  

Figure 2. The connection curves of (34), ( a )  m = 1, n = 3, ( b )  m = 2, n = 3, ( c )  m = 4, n = 3. 
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are connected by a smooth curve they are both the branch points of a specific pair of 
branches of A(z) .  Equation (21) provides a natural extension of a connection curve 
through its two branch points, assuming for the moment that z,( w )  connects just two 
branch points at  complex values of z. If we extend the domain of w from -1 c w 1 
to the whole real line of w, then for ( w / >  1 (which is equivalent to the hyperbolic 
extension 4 + *id  in (17)) the connection curve continues smoothly through each of 
the branch points and may continue on  a trajectory which intercepts the real axis 
corresponding to the algebraic function 2 of the resolvent having a branch point at  a 
pure imaginary value of 4. This hyperbolic extension is of great importance in statistical 
mechanics and  is discussed in I 1  (0 2). 

For cases where the polynomials & ( z )  in (14) have some simple algebraic structure 
of their own the entire equation could be linked to a polynomial with real coefficients 
everywhere in the z plane on a smooth curve z (  w ) .  In this case a large portion of the 
branch points of A are highly structured since large numbers of them probably lie on 
a single smooth curve. This phenomenon is of great importance in statistical mechanics 
where the symmetries of the transfer matrix can lead to precisely this global effect 
upon the characteristic polynomial of T ~ (  Z )  or indeed of the whole transfer matrix Tn . 
A striking example of this is the self-duality symmetry which is a property of the 
partition function of numerous two-dimensional models. Details of this are given in 
11; here we note that models with self-dual symmetry are such that in the large system 
limit of arbitrarily large m the branch points of the eigenvalues of T , (  Z )  are arbitrarily 
many in number and a subset of them lie on a single invariant connection curve. It 
is precisely this phenomenon which is the algebraic origin of the original Yang-Lee 
circle theorem for all Ising models (Yang and  Lee 1952, see 11, 0 8). 

In this section we have discussed the algebraic and  geometric structure of a cut L 
in the plane of the variable z in terms of which a many-valued function A ( z )  defined 
by (14) is mapped out. In this cut plane the branches of A are regular and everywhere 
distinct in modulus; the cut L is a set of algebraic curves connecting the branch points 
of A.  These connection curves are themselves the branches of a single algebraic function 
defined by the resolvent polynomial equation ( 19) previously introduced by Wood 
(1985). The geometry of the connection curves is characterised by their form at the 
branch points of A and the nature of their own intersection points which are determined 
by the branch points of the algebraic function (20) defined by the resolvent and their 
associated algebraic cycle structure. Any arc of a connection curve connecting a pair 
of branch points defines a set of points in the z plane where the defining polynomial 
of A (14) contains a multiple of a real quadratic factor. In the following section we 
trace the relationship between the locus of partition function zeros and  the connection 
curves generated by the block T ~ ( Z )  of the transfer matrix through its characteristic 
equation, for a general one-parameter lattice model in statistical mechanics. 

4. The limiting locus of partition function zeros 

We now consider in general terms the manner in which the partition function (2) 
constructs an  asymptotic distribution of zeros in the z plane in the limit of m + 00. In 
this there are two aspects which must be clearly distinguished at the outset. These are 
the asymptotic distribution of zeros of the semi-infinite lattice obtained in the limit of 
n + co, m finite, and the asymptotic locus obtained in the full thermodynamic limit of 
m + 00 and n + 00. In the former case we denote the asymptotic locus of zeros by C ,  
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which becomes C, in the thermodynamic limit of m + W. The purpose of this section 
is to present in general terms the relationship between the loci of the sequence C, 
( m  = 2 , 3 , .  . . ), the connection curves formed by the eigenvalues of ~ ~ ( z )  (denoted by 
the algebraic function A I )  and the asymptotic locus of zeros C,. In this it emerges 
that the connection curves of A I  are of greater interest and significance than C, in 
relating a study of partition function zeros to critical behaviour. The branch point 
structure of A ,  and the nature of the connections between them provide, respectively, 
a view of the way in which the critical singularities emerge as the limit of an infinite 
sequence of algebraic singular points, and a new practical way of obtaining accurate 
determinations of both critical points and the non-physical singularities of the limiting 
partition function per site. 

The partition function Z m n ( z )  is the symmetric function of all of the eigenvalues 
of the transfer matrix Tn(z) given by (2).  Consider the eigenvalues A , ( z )  of T( l (z )  
ordered in modulus 

\ A l (  3 \ A z /  3. . .S \An\ (42) 

and let C, be the subset of the z plane where Z,,,(z) is asymptotically zero in the 
limit of n + 00, by which when ( A l l  2 1 we shall mean 

(43) 
Z m n  (2)  lim -- 

n - ,  lAl(z)I" -'' 
We arrive at the following mechanisms by which z is in the set C",. 

(i) If lA1(z)l< 1 ,  then Z E  C,. 
(ii) If A ,  is distinct in modulus and ( h , ( z ) ( a  1 then Z E  C,. 
(iii) If A ,  f A 2  and lAl(z)l = lA2(z)13 1 then z E C,. 
Cases (i) and (ii) are obvious; in case (iii) 

and 

A ~ ~ A ~  = ei+. (45) 

For all C$ which are rational multiples ( 2 j +  l ) / n  of T, 1 +e'"' is zero infinitely often 
in the limit of n + w  and, since [A,JAll<l,  k 2 3 ,  (43) is satisfied (see also Martin 
1986). When b, is an irrational multiple of T it follows from Kronecker's theorem 
(Hardy and Wright 1960) that 11 +e'"'l< E for any positive E at infinitely many values 
of n, and the partition function can be made as close to zero as we please. 

It has frequently been observed in the literature that C, often appears to be a 
smooth curve for examples of one-parameter models which have been investigated 
either analytically or numerically. We can see in (45) the mathematical reason why 
this is to be expected for C,. Conditions (i) and (iii) reveal two possible geometries 
for C,. Condition (i)  allows for the possibility that C,,, is dense inside a bounded 
region of the z plane even for one-parameter models, although this does not appear 
to be an option taken up by such models. Condition (iii) and equation (45), however, 
identify C, to be made up of algebraic curves. These curves are a subset of the 
algebraic curves z , ( w )  generated by the resolvent equation (20) in the form of (21) 
formed on the characteristic polynomial of the whole of the transfer matrix Tn(z). 
We shall denote this resolvent by Rn(z,  w ) .  
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In (iii) the branches A I  and A 2  can be viewed as cooperating in determining part 
of C,. However more than two branches can cooperate in this way and a plethora of 
extensions to (iii) unfolds. Thus we could extend (iii) by adding the following. 

(iv) If A I  # A,#  A 3  and l A , l =  lAzl = / A 3 [  and 

A I  : A , :  A 3  = 1 : eim : e-im 

then Z E  C, for all #. 
This condition adds no new regions to the z plane than those already found from 

the resolvent Rn(z, w), but we see that the subset of these curves which form C, are 
not exhaustively classified by (iii). It is to be expected however that condition (iii) 
would be the most common mechanism in generating the asymptotic zeros of Zmn( z )  
in the limit of n +CO. In a recent paper, Martin (1986) has identified condition (iii) 
in a study of the square lattice q-state Potts model using a novel factorisation (5). The 
claim is that finite rn x n lattice partition functions can give a good image of the limiting 
distribution C,, but no examples of C, itself are presented (see 11, § 3).  It is important 
to understand that at this stage the algebraic curves which form C, cannot yet be 
identified as connection curves of the type defined in § 3. The curves generated by 
Rn(z, w )  will be of two types: ( a )  sets of connection curves Ck generated by the 
irreducible characteristic polynomials of each block Tk( z )  in ( 5 )  which form a linking 
of the branch points of Ak, and ( b )  the sets of curves C: tracing out paths in the z 
plane where branches of Ak and A, ( k  # j )  are equal in modulus. We will call such 
curves cross block curves since they are not related to the branch point structure of 
either Ak or A,. 

The labyrinthine nature of the geometry which unfolds can only really be understood 
at the outset by example. Here we take two simple examples; many others are given 
in 11. As a very simple example we consider the nearest-neighbour Ising model on a 
2 x n section of the quadratic lattice, where the 4 x 4 transfer matrix has three blocks 
which define one two-valued function and two single-valued functions. These are 

A: + 4( 1 + s2) A ,  + 4s' = 0 (s = sinh 2 K )  (47) 

A' = z 2 -  1 (48) 

and 

A3 = 1 - z-* ( z = e Z K ) .  (49) 

The curves traced out by the resolvent Rn(z, w )  (here R = 4) are shown in figure 3 in 
the z plane. The connection curve of A ,  lies on the unit circle Is/ = 1; this can be seen 
immediately since on writing A I  = sy, 

y 2 + 4 ( s  + s - ' ) y  + 4  = 0. 

This is an example of the quadratic factor (40), since on Is1 = 1 (50) is a real quadratic 
factor and the connection curves are the arc of s = eis connecting 8 = .n/3 and 2713 
and its complex conjugate (Wood 1985). In the z plane these are the four arcs shown 
in figure 3 on the circles z = * 1  +J2 eia. The remaining curves in figure 3 are all cross 
block curves, the unit circle is C:' and the curves C:' and C:' are reciprocal curves; 
in fact viewed as a whole the curve in figure 3 is self-reciprocal. 

Having constructed the set of curves generated by the resolvent Rn( z, w )  the question 
arises as to which of these is C, .  In this the nature of the Gibbs distribution allows 
for a powerful observation. In the limit of zero temperature which we take to be the 
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Figure 3. The connection curves and cross block curves traced out by R,(z, w )  ( z  = e Z K )  
obtained from the transfer matrix of the nearest-neighbour Ising model on a 2 x n strip of 
the quadratic lattice; 0 denotes a branch point. 

limit of Iz( + o;, any thermodynamic system is frozen into its ground state, namely the 
configurations in C$l . . . which are of minimum energy. For models which exhibit 
any form of phase equilibrium the ground state is necessarily degenerate and the 
eigenvalues of Tn( z )  are asymptotically degenerate in the limit Iz( + o;,, where A in 
(42) is I-fold degenerate for any model with 1 coexisting ground states. Condition (iii) 
above ensures that the circle at infinity is part of C,. It is immediately obvious that 
the curves of R,(z,  w )  belonging to C, and meeting on the circle at  infinity cannot 
be connection curves for if they were this circle would be a branch point at infinity 
and the thermodynamic functions would all have an algebraic singular point at zero 
temperature, which is clearly impossible. Therefore the curves belonging to C, and 
meeting at infinity are all cross block curves and there always exists a circle /zI = p 
where, for IzI > p, C, is composed only of cross block curves. Here we have a hint 
that C, is composed of such curves (unless and  until an  intersection with a connection 
curve occurs), namely the continuation of this set of smooth curves lying outside ( z (  = p. 
This assumption has a n  important geometrical consequence for the connection curves 
Ck, which follows from the theorem of Perron and Frobenius. 

The z plane cut by the curves C ;  and C: is a plane in which the branches of A I  
are all distinct in modulus from all other eigenvalues of the transfer matrix. We know 
that AT is distinct and maximum in modulus on the positive real axis of z. It follows 
from this that if the connection curves in Ch are not part of C, they must be completely 
fenced off from the real axis by curves from the set Ckk. That is, starting at a point 
A on the real positive axis of z there is no path in the z plane connecting A to the 
connection curves of A,  involving the branch A: which does not intersect a cross block 
curve. If there were such a path then those parts of C!,, which could be reached in 
this way would satisfy (iii) and  hence be part of C,. Such an  effect is strikingly 
illustrated in figure 3 where C:’ and C:’ have completely isolated the connection curve 
C: from the whole of the real axis. It follows from the above argument that C, in 
this case is made up  of C:’ and C;’; C:’ is redundant. 

As a second and slightly more complicated example we consider the same 2x00 
quadratic lattice for an  Ising model with next-nearest-neighbour interactions of equal 
strength to the nearest-neighbour interactions and in terms of the variable z = e4K. 
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Again T4(z) has three irreducible blocks and the eigenvalues are given by 

Ai-A1(z3+ ~ + 2 ) +  (z4+ z3 -4z2+ Z+ 1)  = O  (51) 

A’ = z 3 -  1 (52) 

(53) A3 = 1 - Z. 
R4(z, w )  traces out the intricate system of curves shown in figure 4 ( a )  which are 
decomposed in figures 4 ( b )  and (c) into the connection curves of A, and the cross 
block curves Cy, respectively. We see again that the connection curve C :  is isolated 
from the real positive axis by a fence formed by C:’ but now involving the trisection 
point which lies on the C :  curve. Curves such as C:’ which intersect the real positive 
axis can of course be immediately eliminated from C,. This curve is formed by the 
branch of A, which is not A:. We can readily determine which eigenvalue of the 
transfer matrix is of maximum modulus in the various regions of the z plane. This is 
illustrated in figure 5 ( b ) ,  from which we confirm that the curves of figure 5 ( a )  are 
those which form C2. Here C2 is the smooth extension of the curves C:’ connected 
to the circle at infinity but now only up to an intersection point which is also a point 
on C:, and C :  is partially isolated from 

f I 1 

the positive axis by C, .  

I I 

I L 

Figure 4. ( a )  The connection curves and cross block 
curves traced out by R,(z ,  w )  ( z  = e 4 K )  obtained 
from the transfer matrix of the Ising model with 
equal nearest-neighbour and next-nearest-neighbour 
interactions on a 2 x n strip of the quadratic lattice; 
0 denotes a branch point. ( b )  The connection curves 
in ( a ) ;  0 denotes a branch point. ( c )  The cross block 
curves in ( a ) .  
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Figure 5. ( a )  The curves in figure 4( a )  which form the limiting locus of zeros C2. ( b )  The 
connection curves in figure 4(a) in regions where an eigenvalue of T n ( z )  other than a 
branch of A, is maximum in modulus. In the shaded region A, is maximum in modulus. 

Clearly, as m increases a geometry of almost unimaginable complexity unfolds in 
the curves traced out by Rn(z,  w ) ,  but I suspect that the two key principles which 
govern the location of C, are already evident in the two examples above. These are 
as follows. 

( a )  C, is constructed by the continuation of the cross block curves which are 
connected on the circle at infinity, and these curves will be a subset of the curves CLk. 

(6) The connection curves of A, formed by the branch A: are in some sense 
isolated from the real positive z axis by C,. 

These two constraints strongly suggest that the convergence of C, to C, is highly 
pathological in character involving an ever-increasing number of connections to the 
circle at infinity coupled with a highly intricate isolation of the connection curves of 
A: from the real axis. Evidence of such pathological behaviour has recently been 
observed by Wood and Turnbull (1986) in attempts to extend finite-size scaling 
calculations into the complex z plane. In the approach of C, to C ,  I therefore expect 
the following geometry to emerge. The cross block curves which are connected to the 
circle at infinity will become dense and these curves simultaneously form some isolation 
of Ck from the real positive axis. In the limit of m + m  the isolation curve becomes 
the boundary formed by Ck which isolates dense connections to the circle at infinity 
from a line element on the positive real axis which is 0 s z s z , ,  which z ,  is of course 
the critical point. This is to say that both the isolation curve and CL in the limit of 
m + m simultaneously converge to C,. 

We have now arrived at the conclusion that the thermodynamic limiting locus C, 
is in fact determined by the limit 

where C Q  is the subset of C!,, traced out by the branches of A, which are simultaneously 
maximum and equal in modulus. As is well known, the theory of critical correlations 
has long associated the divergence of the correlation range with the occurrence of 
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asymptotic degeneracy of the two principal eigenvalues ( z  real) of the transfer matrix 
(Kac 1968, Fisher and Burford 1967, Thompson 1972). For z real these two eigenvalues 
generally belong to different blocks of ( 5 ) .  The structure described above would 
indicate that asymptotic degeneracy occurring at the critical point z, is of two distinct 
algebraic types. Firstly, a subset of the branch points of A: will converge onto the 
real axis at z ,  and in this the critical point is associated with a branching phenomenon 
and a cycle structure obtained in the limit of m +a; this will determine the nature of 
the singularity of the free energy at z, and in particular the specific heat exponent (see 
0 5 ) .  Secondly, the cross block curves which form the isolation curve converge onto 
C ,  in the limit of m + 03 indicating that asymptotic degeneracy in modulus occurs at 
z, between eigenvalues contained in different blocks, and this will determine the 
divergence of the correlation range and the exponent v. 

The identification of C,  as the limit given in (54) is the main conclusion of this 
section. It states that in finding the location of C,  it is sufficient to consider only the 
connection curves Ck of A,  which are generated by the resolvent R ( z ,  w )  defined in 
(20) and (21) belonging to the characteristic polynomial of the block T , ( z )  in ( 5 ) .  It 
was Fisher (1965) who first observed that the original theorems of Yang and Lee (1952) 
and Lee and Yang (1952) which were developed in the theory of condensation in the 
complex activity plane could be transcribed to apply in the temperature plane to the 
partition function of a lattice model problem. The partition function/site of an m x 00 

lattice section is a branch of A l  defined by (13) and is an eigenvalue of ~ ~ ( 2 ) .  We 
have already remarked that T 1 ( z )  is a strictly positive matrix ( z  > 0) and hence the 
function 

is a polynomial in z with positive coefficients. Here Z!,!i is not the partition function 
of the m x n section but it converges to the partition function per site of the section 
in the limit of n +CO. Because ~ ~ ( 2 )  is strictly positive the Yang-Lee theorems apply 
not only to the whole partition function Z,, but also to the block partition function 
Z!,!!, alone. Thus the connection curves C r  which satisfy condition (iii) above cannot 
intersect the real positive axis at any point; they are the asymptotic locus of zeros of 
the block partition function Zi!, .  

The limiting partition function per site A is completely determined by the distribu- 
tion of zeros over the limiting locus of CY and it is therefore sufficient to consider 
only C Q  in a study of partition function zeros. In addition the branch point structure 
of C r  for finite m suggests a general scheme for obtaining accurate approximations 
to critical points. Applications of this type are the subject of 11. Also, the critical 
point singularities are seen to be obtained as a limit of an infinite sequence of algebraic 
singular points and this is discussed in the following section. The factorisation ( 5 )  
employed by Martin (1986) for the square lattice Potts models in the staggered ice 
model representation places both A l  and A 2  in (42) in the same block. In such a 
representation C ,  itself is a set of connection curves but confining a calculation to 
strictly finite lattices will not reveal the branch point structure of these curves which, 
as described above, is of both practical and theoretical significance (see 11, § 3) .  

z!,!!,( z )  = Tr[ T , ( z ) ] '  ( 5 5 )  

5. Universality and algebraic cycles 

The analytic structure of A:(z) in the limit of m + CO determines the thermodynamic 
critical point behaviour of any one-parameter model, the thermodynamic functions 
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being defined only on the real positive z axis. The critical points and exponents are 
determined by the singular points of A: in the thermodynamic limit. In their original 
papers Yang and Lee (1952) and Lee and Yang (1952) identified the critical points as 
the intersection points of C, and the real positive z axis, and showed that the critical 
exponents emerged in terms of the distribution of zeros on C, in the neighbourhood 
of the critical points. The present development of the theory allows something to be 
said about the critical exponents without recourse to the distribution function of zeros 
on C,. It is the purpose of this section to investigate the possible values available to 
the critical exponents in terms of the accumulation of branch points on C z  in the 
limit of m + 00. If a finite number of branch points accumulate asymptotically at the 
critical point then it is shown that the exponents a and Y are expected to take a specific 
rational form and the exponent 6 to be an integer. 

The analytic structure of the partition function in the thermodynamic limit emerges 
in the development of the function A: in the limit of m + 00. For all arbitrarily large 
and finite m, A: is a branch of the algebraic function A I  defined by the characteristic 
polynomial of ~ ~ ( 2 ) .  Hence for all m, however large, A,  has only a finite number of 
algebraic singular points. These are the branch points of A , ,  some of which are the 
branch points of A: located on C:, and A: in the neighbourhood of one of its branch 
points z k  is represented by a development of the form (27), namely 

A:(Z)=A: (Zk)+C U,&‘” ( 5 6 )  
r 

where p is the cycle number and A: is a member of a cycle system of p branches of 
A , .  If C, is formed in the manner of (54) then not only the zeros of Z m n ( z )  lie 
asymptotically on C, but all of the branch points of A: close onto the same limiting 
locus, In  the limit m + 00 the resolvent becomes an infinite polynomial and the number 
of branch points of A I  becomes infinite. Thus we arrive at a new concept, namely the 
limiting distribution of the branch points of A, and in particular the subset of this 
distribution which belongs to A:. 

In (56) we have the immediate prospect of rational critical exponents since for all 
finite m they are forced to be so, arbitrarily close to the real axis. Whether the exponents 
survive as rational numbers under the limit of m +CO will depend upon the limiting 
distribution of the branch points of AT on C,. In the two-dimensional nearest- 
neighbour Ising model the branch points of AT become dense on C, (Wood 1985): 
in fact they are infinitely dense everywhere. This phenomenon was remarked upon by 
Onsager (1944) in his original paper. He observed that the critical point was a branching 
process ‘of infinite order’. For strictly finite m, however, the branch points zk of A: 
all have n cycle number of two, where 

(57)  
in the neighbourhood of Z k ,  which can be arbitrarily close to z , .  The infinite density 
of branch points in the neighbourhood of z,  on C, annihilates the algebraic character 
of the singularity in the limiting partition function per site. The outcome in this case 
is the well known logarithmic singularity, and the fact that C, is also a natural boundary 
of the limiting partition function. In the few exact solutions available for other 
one-parameter lattice models the specific heat exponent is a simple fraction. The triplet 
Ising model of (9) and the hard hexagon gas (Baxter 1982) where a =! and f ,  
respectively, are both examples of this. Thus if A(z)  is the partition function per site 
then to first order in E = z - z ,  A(z)  takes the form 

h:=AT(Zk) + al&”’+ U*& +. . . 

A ( z ) = h , + a ~ ~ - ” +  . . .  ( 5 8 )  
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where z ,  is an algebraic singular point of A. In addition there are several strong 
conjectures for rational exponents in two-dimensional one-parameter models such as 
the Potts models (for a review see Wu 1982), and many ‘almost exact results’ obtained 
from the Coulomb gas analogy (Nienhius 1984). In such cases the function A ( & )  
would at least be an algebraic function asymptotically in the neighbourhood of E = 0, 
whose polynomial equation becomes asymptotically of the form (58). 

Of the branch points forming the connection curves C F  as m +CO at least one 
complex conjugate pair of branch points closes into the critical point 2,. In  the case 
of the two-dimensional Ising model it is instructive to consider precisely how the 
algebraic singularity of (57)  for finite m becomes overwhelmed in the limit of m + W .  

For finite m, AT is given by 

(59) A: = ( 2  sinh 2K)””{y,y,y5..  . Y * , , - ~ }  

where y ,  is one of the branches of a two-valued function 

y ; - 2 y ,  s+s- l -cos-  + l = O  r = 1 , 3 , .  . . ,2m - 1, s = sinh 2K (60) ( 2m ,=> 
(Onsager 1944). Equation (60) forms a family of quadratic equations parametrised by 
a single parameter r. Clearly the branch points of the functions y ,  are the branch 
points of A: and lie on Is\ = 1 (Wood 1985). In the limit of m +CO the parametrisation 
r in (60) becomes the continuum and 

In A = In sinh 2K +- In y ( 4 )  d4.  (61) 277 l: 
For m finite y ,  = 1 at its branch point where 

1 / 2  

y,+ k - 1 + 0 (i) 
In the limit of m +CO this point is an accumulation point of infinitely many branch 
points. This pathological behaviour in the density of branch points on CY in the limit 
of m + 00 destroys the simple algebraic character of the singularity (57) which exists 
for all finite m. 

We know that the branch points of R1 become infinite in number in the limit of 
m + 00 and that in this limit these are distributed on the connection curves of A l .  We 
do not know how the branch points are distributed on that part of these connection 
curves which is given by (54). The possible outcomes are 

( a )  the branch points on C, are infinitely dense everywhere, 
( b )  the branch points on C, are dense with a well defined distribution everywhere 

( c )  the branch points on C, are discrete. 
The critical exponents will be determined by the distribution of branch points at 

z,; it seems plausible to expect that z ,  will be asymptotically an algebraic singular 
point of A(z)  unless the branch points become infinitely dense at z ,  in the limit of 
m + m .  Consider m large and finite. The connection curves C r  form a system 
converging to C, and initially let us suppose that the branch points of C z  are all of 
cycle number 2 .  A schematic representation of this is given in figure 6. Let the branch 
points on C? be denoted by z k ( m ) ,  k = 1 , 2 , .  . . . Each can be characterised by an 
integer pair (1, j) ( j  = 2 , 3 , .  . . ) where for a given k the j th  branch of A 1  cycles with 
AT. In the limit of m + let the number of branch points which converge onto z, be 

and 
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Figure 6. A schematic illustration of the convergence of the branch points of .I; onto C, 
represented by the dotted curve. 

finite and equal to s. We can identify asymptotically branch pairs (1 ,2) ,  ( 1 , 3 ) ,  . . . , ( 1 ,  s )  
of A,  which become equal at z,. Under such circumstances it is plausible to expect 
that the limiting function A would be algebraic (at least in the neighbourhood of z , )  
where z ,  is a branch point of A with a cycle number p s s .  The denominator of the 
exponent in (58)  (prior to expressing as an irreducible fraction) is now determined. 
One would generally expect this to be the upper limit of s. The numerator of the 
exponent depends upon the initial term in the expansion (56); if a ,  f 0 then in the 
limit of m + CD z ,  will be asymptotically a root of R ( z ,  w )  of multiplicity 2(s - l ) ,  an 
effect induced by the meeting of s - 1 complex conjugate pairs of connection curves 
at z,. In fact the critical point is asymptotically a branch point of the branches z , ( w )  
generated by the resolvent (see 0 3 and 11). The simplest value adopted by the exponent 
in (58) would now be 

2 - a  = 2 ( s - l ) / s  (63) 
(for a full analysis of initial exponents in E expansions of algebraic functions see Fuchs 
and Shabat (1961) and Appell and Goursat (1929)), whence we arrive at a specific 
heat exponent a in the form 

a = 2 / s  s = 3 , .  . . * (64) 
If the scaling relation d v = 2 - a  holds then the correlation length exponent for 
two-dimensional models takes the very specific form 

(65) 
The two-dimensional Ising model exponents of a = 0 and v = 1 are included in (64) 
and (65) in the limit of s+m corresponding to an infinite number of branch points 
converging onto z ,  (Onsager 1944). We note that both the three-spin Ising model and 
the hard hexagon gas on the triangular lattice (Baxter 1982) satisfy (64) and (65) with 
s = 3 and 6, respectively. These two cases also correspond to the conjectured exponents 
of the four- and three-state Potts models (for a review see Wu 1982). The self-avoiding 
walk problem in two dimensions also satisfies (65) with s = 4  (de Gennes 1972). 

The exponents in (64) and (65) assume that a, # 0 in (56); if the first non-zero term 
in (66) for a given model is a,  then in two dimensions under the same assumptions 

Y = ( s  - l ) / s  s = 3 , 4 , .  . . . 
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the exponents become 
Q = 2 ( 1 - t + t / s )  

v = t ( s  - l ) / s  
and 

The exponents of the two-dimensional percolation problem are now also included 
corresponding to t = 2 and s = 3 in (66) and (67) leading to a negative specific heat 
exponent. We see that an infinite specific heat is only possible if t = 1. The three-spin 
king model on the triangular lattice (Baxter and Wu 1974, Baxter 1974) appears to 
provide a specific example of the above mechanism in which z, is an algebraic singular 
point of A( z). The model is self-dual; this is a property which allows the branch points 
of A: to accumulate on the unit circle IzI = 1 where z = sinh 2K (see I1 for further 
discussion). In the limit of m +CO the partition function per site is entirely algebraic 
and is given by 

A2/6z = y (68) 

(69) 

where y is the four-valued function defined by 
z( 1 + z’)(y - 1 ) 3 (  1 + 3y) = 2( 1 - z)4y3. 

The critical point at z = 1 is a branch point of multiplicity 3 and cycle number 3 
corresponding to s = 3 in (63). The first term in the E expansion of the three branches 
forming a cycle at z = 1 is easily verified to be 

confirming the numerator of 2(s - 1 )  in (63). The algebraic singularities of the ther- 
modynamic functions of this model have been very thoroughly discussed by Joyce 
(1975a, b). The connection curves of the four branches of y are shown in figure 7 
where, as expected, the unit circle IzI = 1 appears. 

It is of course possible that algebraic cycles larger than two appear in the branch 
points z k ( m )  of A: and simple equations for the exponents Q and v can again be 
obtained on the basis of the cycle numbers of those branch points which converge 
onto z, in the limit of m + 00. Again the total number s of branches of A: which are 
asymptotically equal at z = z, can be the denominator of the exponent in (58). Here 

Figure 7. The connection curves of the algebraic function y in (69) in terms of which the 
limiting partition function per site A of the three-spin Ising model is defined. The connection 
curves of AT lie on the unit circle, here shown in the z = sinh 2 K  plane. 
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it would seem possible to identify a concept of ‘universality’ as something which is 
essentially algebraic in character, namely the value of s. As presently understood by 
this author the statement that models A and B belong to the same universality class 
amounts to little else than the observation that they possess the same critical exponents. 
Thus on the basis of numerical work it is said that the hard square gas (Baxter et a1 
1980, Wood and Goldfinch 1980) and the two-dimensional Ising model are in the same 
universality class. As far as this author is aware no mathematical meaning has as yet 
been attached to such a statement. If indeed models in statistical mechanics grouped 
themselves into such classes there would surely have to be a very strong mathematical 
mechanism promoting such groupings, and also one of some simplicity. The exponents 
of two-dimensional models which are simple fractions suggest strongly that this 
mechanism must be algebraic in origin. In the development of the limiting function 
A( z) through an infinite sequence of algebraic functions At with only algebraic singular 
points we have a basis for such a mechanism which is algebraic. It appears to the 
present author that the denominator of any thermodynamic exponent is much more 
significant than the numerator since it, or a multiple of it, is the algebraic cycle number 
associated with the critical point, which ultimately derives from the cycle structure of 
A. Thus in the present case of one-parameter models the numbers s and t in (63)-(67) 
suggest themselves as a double index for universality classes. s is the number of 
branches of AT which are asymptotically equal at z , .  For models with divergent specific 
heats t = 1, and so for such cases s acts as a single indexing parameter for a universality 
class. Thus s =CO represents a whole class, independent of dimension, where a = 0 
and v = 2 / d .  Similarly, s = 16 represents a whole class where a = Q and v = 15/8d. 
Thus if the hard square gas really is in the same universality class as the Ising model 
we should expect z ,  for this model to be an accumulation point of infinitely many 
branch points in the limit of m +.CO. The case s = 2 is exceptional in that the exponent 
2 - a  in (58) and (63) is an integer, whence A is analytic at z,, and the mean-field 
exponent a = O  is recovered corresponding to a finite specific heat. In such a case in 
the limit of m +CO a pair of quadratic branch points of AT converges onto z , .  The 
two-dimensional king model (s = 00) and the mean-field model (s = 2) mark the two 
extremes of this scheme for indexing universality classes, and a = f would be the largest 
positive value of a which is possible. 

Finally we can attempt to extend the analysis above to models in an external field 
H where the critical exponent 8 is defined by 

(71) 
representing the critical behaviour to occur at H = 0. Although some caution should 
be exercised in extending the present algebraic analysis to algebraic functions of more 
than one variable we may envisage the connection curves C y  in the complex field 
plane at real values of temperature (see 11, § 8). In the limit of m +CO branch points 
will accumulate onto a limiting locus and 6 in (71) can therefore be a cycle number 
of the branch points accumulating at H = 0, and hence an integer. For the two- 
dimensional Ising, Potts and hard hexagon models 6 is either known exactly or 
conjectured to be an integer. 

A = A, + a ,  H(s+t”s + . . .  ( z  = z c )  

6. Summary 

This paper has considered some of the algebraic features which are common to all the 
one-parameter lattice models of statistical mechanics. An understanding of the way 
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in which the limiting locus of partition function zeros C, emerges as a limiting process 
defined on a sequence of m x CO lattices has been attempted. The starting point is the 
observation that the eigenvalues of finite transfer matrices T, are all algebraic functions 
defined by a factorisation of the characteristic equation. The partition function per 
site AT at real temperatures is a branch of an algebraic function A ,  defined by the 
characteristic equation of a strictly positive matrix T~ which can be obtained in a block 
diagonalisation of T,. For one-parameter models such a factorisation is always 
possible. 

In 0 3 we have defined a cut L in the complex z plane, where at all points in the 
cut plane a many-valued algebraic function A( z )  defined by a irreducible polynomial 
equation in A and z has function elements which are distinct in modulus. The cut L 
is a set of connections on the branch points of A which become linked via a system 
of algebraic curves which themselves are the branches of an algebraic function defined 
by the polynomial resolvent of (19) and (20). These curves have been called the 
connection curves of the algebraic function A; they exhibit a highly structured geometry 
in terms of their intersection points which correspond to the occurrence of branch 
points in the algebraic functions generated by the resolvent equation. Everywhere on 
a connection curve there exists a real quadratic factor in the original defining polynomial 
of A. 

In 0 4 we have considered C, as the limit of the sequences C, and C: which are 
traced out by the algebraic curves generated by the resolvent (19) when constructed 
from the characteristic equations of the whole transfer matrix T, and the block matrix 
respectively. These algebraic curves are points in the z plane where the eigenvalues 
of Tn of T, are simultaneously equal and maximum in modulus, but only those obtained 
from T ,  form a cut of the type L discussed in § 3. It is postulated that both C, and 
CF converge onto C,. Since only C: is linked to the branch point structure of A I  
and since the thermodynamic critical point is determined by the convergence of branch 
points onto z ,  it is of greater significance and interest and is also easier to compute. 

Possible implications for the value of the critical exponents cy, v and S are developed 
in 9 5 .  For all finite but arbitrarily large m AT is an algebraic function and consequently 
has only algebraic singular points. In the neighbourhood of any such singular point 
zk AT has a unique expansion in fractional powers of E = z - z k .  In the limit of large 
m AT has an algebraic singular point in the complex plane which can be made arbitrarily 
close to the real critical point 2,. Thus we envisage that the singularity at z, in the 
limiting partition function per site A is approached through a sequence of the algebraic 
singular points of AT which themselves converge onto C,. It is suggested that the 
nature of the singularity in A at z ,  up to first order in E will be determined by the 
number of the branch points of AT which in the limit of m +CO converge onto the 
critical point z,, and that this number s is a natural index for a universality class. It 
is assumed that for s finite the singularity in A at z ,  will be algebraic and that, subject 
to simple assumptions on the E expansion about z,, the exponent v may commonly 
be expected to take the specific rational form (65) for many two-dimensional one- 
parameter lattice models, and the exponent 6 to be an integer. 
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